Saturday, October 6, 2012

End Behavior of Polynomial Functions



Laws of the End Behavior of a Polynomial Function







End Behavior of Polynomial Functions
The characteristic of a continuous function at extreme points. 

Polynomial Function Expression:
anxn+an-1xn-1+an-2xn-2… +a2x2+a1x1+a0

Odd Exponents (n)

When the leading coefficient is positive (an>0), the graph falls to the left and rises to the right: 

f(x) → ∞ 
as x → ∞
&
f(x) → -∞ 
as x → -∞

When the leading coefficient is negative (an<0), the graph rises to the left and falls to the rights. 

f(x) → ∞ 
as x → -∞
&
f(x) → -∞ 
as x → ∞

Even Exponents (n)

When the leading coefficient is positive (an>0), the graph rises to the left and right.

f(x) → ∞ 
as x → -∞
&
f(x) → ∞ 
as x → ∞

When the leading coefficient is negative (an<0), the graph falls to the left and right.
f(x) → -∞ 
as x → -∞
&
f(x) → -∞ 
as x → ∞



No comments:

Post a Comment